Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer
نویسندگان
چکیده
Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16. We further propose that there exists an electron transfer reaction between ICG and VP-16 under irradiation. This study therefore shows the anticancer efficacy of ICG-PDT combined with VP-16. These findings suggest that ICG-mediated PDT may be applied in combination with the chemotherapy drug VP-16 to treat some cancers, especially the non-small-cell lung cancer.
منابع مشابه
Photosensitivity and Radiosensitivity of Indocyanine Green on Human Cell Lines MCF7 and DFW
Background & Aims: In this study with the aim of benefiting from non-laser sources in photodynamic therapy, photo and radio sensitivity of indocyanine green as a sensitizer in photodynamic and radiation therapies were investigated. Methods: Based on the broad absorption peak of indocyanine green and using non-coherent light, the experiments were performed on human cells derived from breast canc...
متن کاملPhotodynamic therapy (PDT)
Photodynamic therapy (PDT) is a comparatively novel therapeutic method involving a safe light source and a light-sensitive substance, termed as photosensitizers (PSs), such as methylene blue (MB), toluidine blue (TBO), sulfonated aluminum phthalocyanine, chlorine derivatives, nontoxic indocyanine green (ICG), and curcumin (CUR). (1) The combination of a nontoxic PS with low-intensity visible li...
متن کاملSynergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells
Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...
متن کاملIndocyanine green-mediated photodynamic therapy on glioblastoma cells in vitro
Photodynamic therapy (PDT) is an alternative therapy which is administered with non-toxic drugs, called photosensitizers (PSs), along with irradiation at a specific wavelength of light to damage tumor cells. Different wavelengths of light sources and photosensitizers have been investigated in treatment of many cancer types. In this study, we investigated whether photodynamic therapy using indoc...
متن کاملPhotodynamic therapy with indocyanine green injection and near-infrared light irradiation has phototoxic effects and delays paralysis in spinal metastasis.
OBJECTIVE The purpose of this study was to investigate the phototoxic effects of photodynamic therapy (PDT) with indocyanine green (ICG) and near-infrared light irradiation on rat mammary adenocarcinoma cells, and its therapeutic efficacy in a rat model of spinal metastasis. BACKGROUND DATA Although PDT has been successfully used as a non-radiation treatment for many malignancies, it has not ...
متن کامل